molar absorption coefficient, ε

molar decadic absorption coefficient
Absorbance divided by the absorption pathlength, l, and the amount concentration, c:

$$\varepsilon(\lambda) = \frac{1}{c \ l} \ \log \left(\frac{P^0}{P_\lambda} \right) = \frac{A(\lambda)}{c \ l}$$

where P^0 and P_λ are, respectively, the incident and transmitted spectral radiant power.

Note 1: The term molar absorptivity for molar absorption coefficient should be avoided.

Note 2: In common usage for l/cm and c/mol dm$^{-3}$ (M), $\varepsilon(\lambda)$ results in dm3 mol$^{-1}$ cm$^{-1}$ (M$^{-1}$ cm$^{-1}$, the most commonly used unit), which equals 0.1 m2 mol$^{-1}$ (coherent SI units).

2007, 79, 371