Paper No:

Biochar Characterization in Complex Soil Mixtures - High Resolution Nitrogen Pore Distribution Analysis (HRPDA)

Larry Murrell¹, Yun-feng Chang², and Greg Thiele³

1. Independent Consultant, 2. Sigma Innova LLC, 3. Micromeritics Analytical Services

Introduction

- · Experimental technique used for catalysts and sorbents
- Results for 'state-of-art' Cabot carbon black
- Results for Cabot carbon black mixed with soil
- Results for commercial charcoal subjected to freeze-thaw cycles
- · Future application potential for biochar samples

Analytical Technique

- Volumetric dosing N₂ adsorption at liquid nitrogen temperature gives accurate 'map', or 'blue print', of both size and amount of voids in materials < 3000 Å diameter
- When combined with Hg porosimetry detailed structure of porous materials produced from 500 micrometer diameter to about 5 Å or 0.5 nm
- Two techniques are complimentary and provide complete detail of void structure in porous materials
- Total analysis time per sample: 16 hours

Cabot 'Unique' Carbon Black

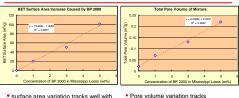
Cabot Black Pearl 2000 developed for fuel cells

	BET Surface	Total Pore	t-plot Micro-
Sample	Area	Volume	pore Area
	(m ² /g)	(cc/g)	(m²/g)
Black Pearl 2000	1500	3.0	1123

 Black Pearl 2000 represents an apparently unique carbon black development with combination of high surface area and high pore volume with wide pore distribution between 10 and 100 nm diameter

MICROMERITICS

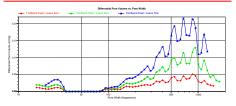
BP 2000 mixed with Mississippi Loess


Sample	BET Surface Area (m²/g)	Total Pore Volume (cc/g)	t-plot Micro- pore Area (m²/g)
1 wt. % Black Pearl 2000/Loess	40	0.02	28
3 wt. % Black Pearl 2000/Loess	70	0.13	50

 Calculated BET surface areas of 35 and 65 m²/g and total pore volume of 0.05 and 0.11 cc/g for two samples agree with experimental results

MICROMERITICS ANALYTICAL

BP 2000 mixed with Mississippi Loess

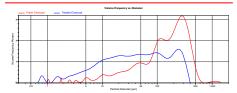


 surface area variation tracks well with amount of Black Pearl 2000 in mixture Pore volume variation tracks well with amount of Black Pearl 2000 in mixture

"Blue-Print" of BP 2000 in Loess Soil

 Complex and detailed pattern of void spaces related to "bunch-of-grapes" structure about 800 nm size made from strings of primary particles

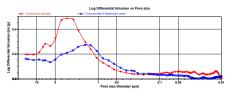
Commercial Charcoal Results


Sample	BET Surface Area (m²/g)	Total Pore Volume (cc/g)
Charcoal	2.9	0.006
Charcoal with 8-cycles 'freeze-thaw-cycles'	5.5	0.009

- N₂ porosimetry provides information < 3000 Å diameter
 Hg porosimetry provides information on particles < 360
- Hg porosimetry provides information on particles < 360 micrometer diameter and explains 2 cc/g water uptake

MICROMERITICS

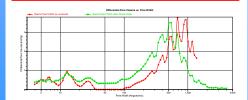
Charcoal Sample: Fresh and After Aging



- Hg porosimetry shows eight cycles of freeze-thaw-freeze treatment shifts particle distribution to smaller particle
- Smaller particle size will lead to higher BET surface area
 We are probably missing the fresh charcoal interstitial volume because it is too large to be seen (>360 micrometers)

MICROMERITICS
ANALYTICAL
ENVICES

Charcoal Sample: Fresh and After Aging



As received charcoal (red) and following eight freeze-thaw cycles (blue)
 Large 3-7 micron size particle are being fractured into smaller size particles following freeze-thaw cycles

MICROMERI MALYTICAL

BP 2000 Transformed by Freeze-Thaw Cycles

As received BP 2000 (red) and following eight freeze-thaw cycles (green)
 note especially the decrease in the pores at the largest size

(A)

Conclusions

- Micromeritics analysis proves mixture of carbon black with soil can be analyzed by HRPDA
- Commercial charcoal has low surface area and low pore volume and is shown to be unstable to 'freeze-thaw-freeze' cycles
- Hg porosimetry (combined) with HRPDA give complete 'blue print' of micro-, meso-, and macropores
- Biochar analysis possible for moderate surface area samples

LICROMERITICS LINALYTICAL

Future Direction

- Prove applicability to biochar samples aged in soils
- Find partners with Micromeritics to apply HRPDA technique to historic biochar beds in Amazon Basin
 - Soil samples
 - Ceramic green ware in these soils
 - Use technique to aid development of structurefunction relationships for understanding biochar crop yield improvements
- Application of techniques to synthetic soils

MICROMERI ANALYTICAL