AUTOCHEM[®] HP 2950

AUTOMATED CATALYST CHARACTERIZATION SYSTEM

micromeritics®

CALCULATIONS

Dec 2017 (Ver 1.x)

mi micromeritics[®]

Table of Contents

Active Particle Size		
BET Surface Area	2	
Calibration Error (Goodness of Fit)	3	
Cross-Sectional Area	4	
First Order Kinetics for TCD	5	
Gram Molecular Weight	6	
Injection Loop Calibration	7	
Injection Loop Volume - Temperature Change	8	
Langmuir Surface Area		
Metal Density	10	
Metallic Surface Area	11	
Peak Area Volume	12	
Percent Dispersion	13	
Stoichiometry Factor	14	
Total Pore Volume	15	
Volume Sorbed	16	
Volume At STP	17	

ACTIVE PARTICLE SIZE

This equation calculates the active particle size.

$$APS = rac{6}{(D_{calc}) imes (rac{W_{s}}{GMW_{calc}}) imes (6.023 imes 10^{23}) imes (SA_{calc})}$$

- APS=Active Particle Size D_{calc} =Calculated metal density (g/cm³) W_s =Sample weight, g GMW_{calc} =Gram molecular weight (g/g-mole)
- SA_{calc} = Calculated specific surface area (per gram of metal)

BET SURFACE AREA

For each included point i, relative pressure P/Po_i and specific volume adsorbed V_{STPi} are calculated for a single point BET. Then the BET transformation B_i is calculated:

$$B_i = rac{rac{P}{Po_i}}{(1-rac{P}{Po_i})V_{STP_i}}$$

where B_i is in units of g/cm³ STP.

A linear least squares fit is performed on the $(B_i, P/Po_i)$ pairs where B_i is the dependent variable and P/Po_i is the independent variable. The following are calculated

Slope, S, g/cm³ STP Y-intercept, Y_{INT}, g/cm³ STP Error of the slope, S_{ERR}, g/cm³ STP Error of the y-intercept, YI_{ERR} g/cm³ STP Correlation coefficient, C_C

Using the results of the above calculations, the following are calculated:

BET Surface Area (SA_{BET} m²/g):

 $SA_{
m BET} = rac{CSA imes (6.023 imes 10^{23})}{(22414 \ cm^3 STP) imes (10^{18} nm^2/m^2) imes (S+Y_{INT})}$

CSA=adsorbate molecular cross-sectional area (nm₂)

BET C value:

$$C = rac{S+Y_{INT}}{Y_{INT}}$$

Volume of monolayer (cm³/g STP):

$$V_M = rac{1}{C imes Y_{INT}} = rac{1}{S + Y_{INT}}$$

Error of the BET Surface Area (m²/g):

 $BET_{ERR} = rac{SA_{BET} imes (S_{ERR}{}^2 + YI_{ERR}{}^2)^{0.5}}{Y_{INT} + S}$

CALIBRATION ERROR (GOODNESS OF FIT)

Used as a means to determine whether the calibration curve is acceptable.

$$E_\% = \sum_{i=0}^N \left[rac{(Q_{m_i}-Q_{c_i})^2}{(N-1)}
ight]^{1/2}$$

E_% = Percent error

Q_m = Quantity measured

Q_c = Quantity calculated

N = Number of measurements

CROSS-SECTIONAL AREA

$$SA_{calc} = \left[\left(rac{F_1 imes SA_1}{W_{atomic1}}
ight) + \left(rac{F_2 imes SA_2}{W_{atomic2}}
ight) + \dots + \left(rac{F_N imes SA_N}{W_{atomicN}}
ight)
ight] \cdot (GMW_{ ext{calc}})$$

SA _{calc}	 Calculated cross-sectional area 	
F _N	 Fraction of sample weight for metal N 	
SA _N	 Cross-sectional area for metal N 	
W _{atomicN}	= Gram molecular weight of first metal (g/g-mo	ole)

mi micromeritics[®]

FIRST ORDER KINETICS FOR TCD

This series of steps calculates the First Order Kinetics (Heat of Desorption). At least two experiments must be run — commonly 3 experiments are run. The ramp rate must be different for each run. The data are plotted and the slope determined.

The general equation is:

$$lnigg(rac{eta}{T_p\ ^2}igg) = -rac{E_d}{RT_p} + lnigg(rac{E_dA}{RC}igg)$$

Determine the slope s by plotting 2 ln T_p - ln β vs. $\frac{l}{T_p}$ then determine E_d using:

 $E_d = s imes R$

β	=	Ramp rate, degrees/min
Ed	=	Heat of desorption, K joules/(mole K)
R	=	Gas constant
Τp	=	Temperature at peak max
S	=	Slope
Α	=	The quantity adsorbed at saturation
С	=	A constant related to the desorption rate

GRAM MOLECULAR WEIGHT

The calculated Gram Molecular Weight is a weighted average of the number of moles of each active metal.

$$GMW_{calc} = rac{1}{\left(rac{F_1}{W_{atomic1}}
ight) + \left(rac{F_2}{W_{atomic2}}
ight) + \cdots + rac{F_N}{W_{atomicN}}}$$

GMWcalc=Gram molecular weight (g/g-mole)F_N=Fraction of sample weight for metal NWatomicN=Gram Molecular Weight of first metal (g/g-mole)

mi micromeritics[®]

INJECTION LOOP CALIBRATION

These equations are used during calibration of a dose loop:

$$egin{aligned} V_{s_{STP}} &= V_s igg(rac{273.15}{23.15 + T_lpha}igg) imes igg(rac{P_lpha}{760mmHg}igg) \ V_l &= igg(rac{A_l imes V_{s_{STP}}}{A_s}igg) \end{aligned}$$

$V_{s_{STP}}$	=	Volume of syringe at STP, cm ³
Vs	=	Physical volume of syringe, cm ³
Tα	=	Ambient temperature, °C
Ρα	=	Ambient pressure, mmHg
VI	=	Effective loop volume (at loop temperature), cm ³
A_{l}	=	Average peak area of loop injections
As	=	Average peak area of syringe injections

INJECTION LOOP VOLUME - TEMPERATURE CHANGE

Used to correct the apparent loop volume when the temperature of the loop heat zone is changed.

$$V_n = V_o\left(rac{T_o + 273.15}{T_n + 273.15}
ight)$$

- V_n = New Effective Loop Volume, cm³
- V_0 = Old Loop Volume, cm³

T_o = Old Loop Temperature, °C

T_n = New Loop Temperature, °C

LANGMUIR SURFACE AREA

For each included point $_i$, pressure P $_i$ and specific volume adsorbed VSTP $_i$ are calculated as for a single point BET. Then the Langmuir transformation L $_i$ is calculated:

$$L_i = rac{P_i}{V_{STP_i}}$$

where L_i is in units of g/cm3 STP.

A linear least squares fit is performed on the $(L_{i, P})$ pairs where L_{i} is the dependent variable and P is the independent variable. The following are calculated:

Slope, S, g/cm³ STP Y-intercept, Y_{INT}, g/cm³ STP Error of the slope, S_{ERR}, g/cm³ STP Error of the y-intercept, YI_{ERR} g/cm³ STP Correlation coefficient, C_C

Using the results of the above calculations, the following are calculated:

Langmuir Surface Area (SA_{LAN} m²/g):

 $SA_{LAN} = rac{CSA imes (6.023 imes 10^{23})}{(22414 \ cm^3 STP) imes (10^{18} nm^2/m^2) imes STP)}$

Volume of monolayer (cm³/g STP):

$$V_M = \frac{1}{S}$$

Langmuir b value:

$$b = (Y_{INT})V_M$$

Error of the Langmuir Surface Area (m²/g):

$$LAN_{ERR} = rac{SA_{LAN} imes S_{ERR}}{S}$$

METAL DENSITY

$$D_{calc} = \left[\left(rac{F_1 imes D_1}{W_{atomic1}}
ight) + \left(rac{F_2 imes D_2}{W_{atomic2}}
ight) + \dots + \left(rac{F_N imes D_N}{W_{atomicN}}
ight)
ight] \cdot GMW_{ ext{calc}}$$

W_{atomicN} = Gram Molecular Weight of first metal (g/g-mole)

METALLIC SURFACE AREA

This equation calculates the effective metallic surface area per gram of sample.

$$\begin{split} SA_{Metallic} &= \left(\frac{V_s}{SW \times 22414}\right) \times \left(SF_{calc}\right) \times \left(6.123 \times 10^{23}\right) \times \left(SA_{calc}\right) \\ SA_{Metallic} &= \text{Metallic surface area} \left(\text{m}^2/\text{g of metal}\right) \\ V_s &= \text{Volume sorbed} \left(\text{cm}^3 \text{ at STP}\right) \\ SF_{calc} &= \text{Calculated stoichiometry factor} \\ SA_{calc} &= \text{Calculated specific surface area} \\ SW &= \text{Sample weight (g)} \end{split}$$

PEAK AREA VOLUME

This is the basic data reduction equation. It converts the area under a peak to cm^3 of gas.

$$V_{plpha} = A_p imes F_c$$

 $V_{p\alpha}$ = Peak area volume, cm³

A_p = Peak area

 F_c = Calibration factor

PERCENT DISPERSION

This equation is used in a Pulse Chemisorption analysis to calculate the percent dispersion. Some understanding of the chemistry is required to select the proper stoichiometric factor and gram molecular weight.

$$PD = 100 igg(rac{V_S imes SF_{colc}}{SW imes 22414} igg) GMW_{calc}$$

PD=Percent dispersion V_s =Volume sorbed (cm³ at STP) SF_{calc} =Calculated stoichiometry factorSW=Sample weight (g)GMW_{calc}Gram Molecular Weight (g/g-mole)

STOICHIOMETRY FACTOR

The calculated stoichiometry factor is a weighted average. It is dependent on both the individual stoichiometry factor and number of moles of each active metal.

$$SF_{calc} = \left[\left(rac{F_1 imes SF_1}{W_{atomic1}}
ight) + \left(rac{F_2 imes SF_2}{W_{atomic2}}
ight) + \dots + \left(rac{F_N imes SF_N}{W_{atomicN}}
ight)
ight] \cdot (GMW_{calc})$$

SF _{CALC}	=	Calculated stoichiometry factor
SF _N	=	Stoichiometry factor for metal N
F ₁	=	Fraction of sample weight for metal N
W _{atomic1}	=	Gram molecular weight of first metal (g/g-mole)
GMW _{calc}	=	Gram molecular weight (g/g-mole)

TOTAL PORE VOLUME

Total pore volume V_{POR} at a selected physisorption point is calculated:

 $V_{POR} = (V_{STP})(DCF)$

DCF = Adsorbate density conversion factor

VOLUME SORBED

This equation is for loop or syringe injections to calculate volume removed from the injections by the sample.

 $V_S = NV_i - V_{na}$

- $V_{\rm S}$ = Volume sorbed, cm³
- N = Number of injections
- V_i = Volume per injection, cm³
- V_{na} = Total volume not sorbed, cm³

VOLUME AT STP

Volume at standard reduction of gas data to Standard Temperature Pressure (STP) conditions (273.13K and 760 mmHg).

$$V_{ ext{STP}} = V_a \left(rac{273.15}{273.15 + T_a}
ight) imes \left(rac{P_a}{760 mmHg}
ight)$$

 V_{STP} = Volume at STP, cm³

 V_{α} = Volume at ambient temperature and pressure, cm³

 T_{α} = Ambient temperature, °C

 P_{α} = Ambient pressure, mmHg