Gemini ${ }^{\ominus}$ VII Keypad

Surface Characterization Analyzer

Calculations

May 2021

Corporate Profile

Micromeritics Instrument Corporation is the world's leading supplier of high-performance systems to characterize particles, powders and porous materials with a focus on physical properties, chemical activity, and flow properties. Our technology portfolio includes: pycnometry, adsorption, dynamic chemisorption, particle size and shape, intrusion porosimetry, powder rheology, and activity testing of catalysts. The company has R\&D and manufacturing sites in the USA, UK, and Spain, and direct sales and service operations throughout the Americas, Europe, and Asia. Micromeritics systems are the instruments-of-choice in more than 10,000 laboratories of the world's most innovative companies, prestigious government, and academic institutions. Our world-class scientists and responsive support teams enable customer success by applying Micromeritics technology to the most demanding applications. For more information, please visit www.Micromeritics.com.

Contact Us

Micromeritics Instrument Corporation
4356 Communications Drive
Norcross, GA / USA / 30093-2901
Phone: 1-770-662-3636
Fax: 1-770-662-3696
www.Micromeritics.com

Instrument Service or Repair
Phone: 1-770-662-3666
International — contact your local distributor or call 1-770-662-3666
Service.Helpdesk@Micromeritics.com

Micromeritics Learning Center
Phone: 1-770-662-3607
www.Micro.edu

Table of Contents

Corporate Profile ii
Contact Us iii
BET Surface Area 1
BJH Pore Volume and Area Distribution 3
Free-Space Correction Algorithms 13
Horvath-Kawazoe 15
Langmuir Surface Area 26
Single-Point Total Pore Volume 28
t-Method 29

BET Surface Area

For each point designated for surface area calculations, the $B E T^{1)}$ transformation is calculated as:

$$
B_{I}=\frac{P_{\text {rel }_{I}}}{\left(1.0-P_{\text {rel }_{I}}\right) \times N_{\text {ads }}^{I}}
$$

where
$\mathrm{B}_{\mathrm{I}} \quad=\quad$ units of $\mathrm{g} / \mathrm{cm}^{3} \mathrm{STP}$
$\mathrm{P}_{\text {rel, }, \mathrm{l}}=$ relative pressure
$N_{\text {ads,I }}=$ amount of gas adsorbed after equilibrating $I^{\text {th }}$ dose $\left(\mathrm{cm}^{3}\right.$ STP)
A least-squares fit is performed on the ($P_{\text {rell, }, ~}, B_{I}$) designated pairs where $P_{\text {rell, }}$ is the independent variable and B_{ρ} is the dependent variable. The following are calculated:

- Slope (S g/cm ${ }^{3}$ STP)
- Y-intercept ($\mathrm{Y}_{\text {INT }} \mathrm{g} / \mathrm{cm}^{3}$ STP)
- Error of the slope ($\mathrm{S}_{\mathrm{ERR}} \mathrm{g} / \mathrm{cm}^{3} \mathrm{STP}$)
- Error of the y -intercept ($\mathrm{Y} \mathrm{I}_{\text {ERR }} \mathrm{g} / \mathrm{cm}^{3} \mathrm{STP}$)
- Correlation coefficient $\left(\mathrm{C}_{\mathrm{C}}\right)$

Using the results of the above calculations, the following are calculated:
BET Surface Area (SAbet $\mathrm{M}^{\mathbf{2} / \mathrm{G}}$):
$S A_{\mathrm{BET}}=\frac{C S A \times\left(6.023 \times 10^{23}\right)}{\left(22414 \mathrm{~cm}^{3} S T P\right) \times\left(10^{18} \mathrm{~mm}^{2} / \mathrm{m}^{2}\right) \times\left(S+Y_{I N T}\right)}$
where
CSA $=$ adsorbate molecular cross-sectional area $\left(\mathrm{nm}^{2}\right)$

1) Brunauer, S.; Emmett, P.H.; and Teller, E., J.; Am. Chem. Soc. 60, 309 (1938)

bet C Value:

$$
C=\frac{S+Y_{I N T}}{Y_{I N T}}
$$

Volume of the Monolayer (cm ${ }^{3} / \mathrm{g}$ STP):

$$
V_{M}=\frac{1}{C \times Y_{\mathrm{INT}}}=\frac{1}{S+Y_{\mathrm{INT}}}
$$

Error of the BET Surface Area ($\mathrm{m}^{2} / \mathrm{G}$):

$$
B E T_{\mathrm{ERR}}=\frac{S A_{\mathrm{BET}} \times\left(S_{\mathrm{ERR}}{ }^{2}+Y I_{\mathrm{ERR}}{ }^{2}\right)^{0.5}}{Y_{\mathrm{INT}}+S}
$$

Single Point Surace Area ($\mathbf{m}^{2} / \mathrm{G}$):

$$
S 1 P T=V a(1-P r) \times 4.35 \times \frac{C S A}{0.162}
$$

where
$\operatorname{Pr} \quad=\quad$ pressure closest to 0.3 of the relative pressure points designated for surface area calculations
Va $=$ volume corresponding to Pr
$0.162=$ nitrogen molecule cross-sectional area $\left(\mathrm{nm}^{2}\right)$

BJH Pore Volume and Area Distribution

For adsorption data, the relative pressure and quantity adsorbed data point pairs collected during an analysis must be arranged in reverse order from which the points were collected during analysis. All calculations are performed based on a desorption model, regardless of whether adsorption or desorption data are being used.

The data used in these calculations must be in order of strictly decreasing numerical value. Points which do not meet this criterion are omitted. The remaining data set is composed of relative pressure (Pr), quantity adsorbed $\left(\mathrm{V}_{\mathrm{a}}\right)$ pairs from $\left(\operatorname{Pr}_{\mathrm{l}}, \mathrm{V}_{\mathrm{al}}\right)$ to $\left(\operatorname{Pr}_{\mathrm{N}}, \mathrm{V}_{\mathrm{aN}}\right)$ where $\left(\operatorname{Pr}_{\mathrm{N}}=0, \mathrm{~V}_{\mathrm{aN}}=0\right)$ is assumed as a final point. Each data pair represents an interval boundary (or desorption step boundary) for intervals $\mathrm{I}=1$ to $\mathrm{I}=\mathrm{N}-1$ where $\mathrm{N}=$ total number of $\left(\mathrm{Pr}, \mathrm{V}_{\mathrm{a}}\right)$ pairs.

Generally, the desorption branch of an isotherm is used to relate the amount of adsorbate lost in a desorption step to the average size of pores emptied in the step. A pore loses its condensed liquid adsorbate, known as the core of the pore, at a particular relative pressure related to the core radius by the Kelvin ${ }^{1}$) equation. After the core has evaporated, a layer of adsorbate remains on the wall of the pore. The thickness of this layer is calculated for a particular relative pressure from the thickness equation. This layer becomes thinner with successive decreases in pressure, so that the measured quantity of gas desorbed in a step is composed of a quantity equivalent to the liquid cores evaporated in that step plus the quantity desorbed from the pore walls of pores whose cores have been evaporated in that and previous steps. Barrett, Joyner, and Halenda2) developed the method (known as the BJH method) which incorporates these ideas. The algorithm used is an implementation of the BJH method.

Explanation of Terms

A pore filled with condensed liquid nitrogen has three zones:

- Core - evaporates all at once when the critical pressure for that radius is reached; the relationship between the core radius and the critical pressure is defined by the Kelvin equation.
- Adsorbed layer - composed of adsorbed gas that is stripped off a bit at a time with each pressure step; the relationship between the thickness of the layer and the relative pressure is defined by the thickness equation.
- Walls of the cylindrical pore - the diameter of the empty pore is required to determine the pore volume and pore area. End area is neglected.

1) Kelvin, J. (published under the name of Sir William Thomson), Phil. Mag. 42, 448-452 (1871).

2) Barrett, E.P.; Joyner, L.S.; and Halenda, P.P., J. Am. Chem. Soc. 73, 373-380 (1951).

Calculations

The quantities adsorbed $\left(\mathrm{V}_{\mathrm{a}}\right)$ are converted to the liquid equivalent volumes $\left(\mathrm{VI}, \mathrm{cm}^{3} / \mathrm{g}\right)$

$$
\mathrm{Vl}=\left(V_{a_{I}}\right)(D)
$$

where D is the Density Conversion Factor.
The relative pressure $\left(\mathrm{Pr}_{\mathrm{I}}\right)$ is assumed to be close to unity so that substantially all the pores in the sample are filled.

The corresponding Kelvin core radius is calculated. Only pores smaller than this size will be included:

$$
R c_{I}=\frac{-A}{(l+F) \ln \left(P r_{I}\right)}
$$

where
$A=$ adsorbate property factor
$F \quad=\quad$ fraction of pores open at both ends; assumed to be zero for desorption
This radius will be adjusted for the thickness of the adsorbed layer during subsequent calculation steps.

The thickness of the remaining adsorbed layer at this relative pressure is calculated:
$T W_{I}=H P 1\left[\frac{H P 2}{\ln \left(P r_{I}\right)}\right]^{H P 3}$
where
HP1, HP2, and HP3 are Halsey Parameters 1, 2, and 3 (respectively) from the Halsey Thickness Equation prompt.

These calculations illustrate the use of the Halsey thickness equation. If the Harkins and Jura equation was selected, substitute the following wherever the thickness equation appears:

$$
T_{W_{I}}=\left[\frac{H J I}{\left(H J 2-\log \left(P r_{I}\right)\right.}\right]^{H J I}
$$

where
HJ1, HJ2, and HJ3 are Harkins and Jura Parameters 1, 2, and 3 (respectively) from the HarkinsJura Thickness Equation prompt.

The following calculations (a-c) are made for each relative pressure interval based on the increment of volume desorbed during that interval. The variable I refers to the interval number, that is $\mathrm{I}=1$ for the first interval from Pr_{1} to Pr_{2}, and so on. J refers to each previous interval during which new pores were found. K refers to the total number of intervals in which new pores have been found. K is also the number of lines reported on the BJH table for collected data.
a. The thickness of the adsorbed layer at the end of the interval is calculated as:

$$
T W_{I+1}=H P 1\left[\frac{H P 2}{\ln \left(P r_{I+1}\right)}\right]^{H P 3}
$$

(For the last pressure interval from the lowest P_{l} to zero relative pressure, $\mathrm{TW}_{1+1}=0$.)
For the first pressure interval, there are no previously opened pores so the volume of liquid desorbed from walls of previously opened pores is zero $\left(\mathrm{Vd}_{1}=0\right)$, and the remainder of Step a is skipped.

The change in thickness of the wall layer due to desorption from previously opened pores is calculated as:

$$
\Delta T w=T w_{1}-T w_{I+1}
$$

The annular cross-sectional area of the wall layer desorbed is calculated for all previously opened pores:

$$
C S A_{J}=\pi\left[\left(R C_{j}+\Delta T w\right)^{2}-R C_{j}^{2}\right]\left(10^{-16} \mathrm{~cm}^{2} / A^{2}\right)
$$

The total volume of gas desorbed from walls of previously opened pores is calculated:

$$
V d_{I}=\sum\left(L P_{J}\right)\left(C S A a_{J}\right) \quad \text { for all previously opened pores }
$$

where $L P_{\mathrm{J}}=$ length of previously opened pores as calculated in Step b-2.
b. The physical processes occurring for this pressure interval are determined as:

1. If $V d_{1}$ is greater than the current increment of volume desorbed $\left(V l_{I}-V l_{I+1}\right)$, desorption from walls only is occurring. Total surface of walls exposed thus far $\left(\mathrm{cm}^{2} / \mathrm{g}\right)$ is calculated as:

$$
S A_{W}=\sum \pi\left(L P_{J}\right)\left(D_{a v g_{J}}\right)\left(10^{-8} \mathrm{~cm} / A\right) \quad \text { for all previously opened }
$$

pores
where

$$
D_{\text {avg,j }}=\quad \text { weighted average pore diameter calculated in Step b. } 2 .
$$

A new layer thickness ($\Delta T w$) that will not overcompensate for the actual volume desorbed in this interval is calculated:

$$
\Delta T w=\frac{\left(V l_{I}-V l_{I+l}\right)\left(10^{8} \frac{A}{c m}\right)}{S A w_{I}}
$$

Since no cores are evaporated in this pressure interval, no new pores are revealed. Thus no ending Kelvin radius and average pore diameter are calculated for this interval. Note that this means the report may have fewer tabulated intervals on the collected data report than experimental pressure intervals.
2. If $V d_{1}$ is less than the volume increment desorbed during this interval ($V l_{I}-V l_{I+1}$), the remaining volume is due to new pores with core evaporation taking place in this interval. K, the number of intervals with new pores exposed, is increased by 1. (For the interval from the lowest Pr_{1} to zero relative pressure, no new pore volume is calculated and the rest of Step b is skipped.)
The volume desorbed from newly opened pores in this interval is calculated as:

$$
V c_{I}=\left(V l_{I}-V l_{I+1}\right)-V d_{I}
$$

The Kelvin radius for the end of the interval is calculated as:

$$
R c_{k+1}=\frac{-A}{(1+F)\left[\ln \left(P r_{I}+1\right)\right]}
$$

All new pores opened in this interval are represented by one pore having a lengthweighted average pore diameter and a corresponding length sufficient to account for the required volume of adsorbate. The weighted average pore diameter is calculated as:

$$
D_{\mathrm{avg}, \mathrm{~K}}=\frac{2\left(R c_{\mathrm{K}}+R c_{\mathrm{K}+1}\right)\left(R c_{\mathrm{K}}\right)\left(R c_{\mathrm{K}+1}\right)}{R c_{\mathrm{K}}{ }^{2}+R c_{\mathrm{K}+1}{ }^{2}}
$$

$\mathrm{D}_{\mathrm{avg}, \mathrm{K}}$ is the diameter of a pore which would have a surface area that is the average of the areas for pores radius $R c_{K}$ and $R c_{K+1}$, if its length was the mean of the lengths at those radii.

The relative pressure corresponding to $\mathrm{D}_{\mathrm{avg}, \mathrm{K}}$ is calculated as:

$$
P_{a v g_{K}}=\ln ^{-1}\left[\frac{-2 A}{(1+F)\left(D_{\mathrm{avg}_{K}}\right)}\right]
$$

The thickness of the adsorbed layer at this pressure is calculated as:

$$
T w_{\mathrm{avg}_{\mathrm{K}}}=H P 1\left[\frac{H P 2}{\ln \left(P_{\left.\mathrm{avg}_{\mathrm{K}}\right)}\right.}\right]^{H P 3}
$$

The decrease in thickness of the wall layer by desorption from the walls of new pores during the lower portion of the pressure interval is calculated as:

$$
\Delta T d=T w_{\mathrm{avg}_{\mathrm{K}}}-T w_{\mathrm{I}+1}
$$

The cross-sectional area of the newly opened pores is calculated as:

$$
C S A c_{\mathrm{K}}=\left[\frac{D_{\mathrm{avg}_{\mathrm{K}}}}{2}+\Delta T d\right]^{2}\left(\frac{10^{-16} \mathrm{~cm}^{2}}{\dot{\mathrm{~A}}^{2}}\right)
$$

The length of the newly opened pores is calculated as:

$$
L P_{\mathrm{K}}=\frac{V c_{\mathrm{i}}}{C S A c_{\mathrm{K}}}
$$

Pore diameters and radii are adjusted for the change in thickness of the adsorbed wall layer during this interval. If new pores were opened during this interval, the average diameter is adjusted by the change in layer thickness during the second portion of the desorption interval as:

$$
D_{\text {avg,k,new }}=D_{\text {avg,k,old }}+2(\Delta T d)
$$

The layer thickness change during the whole interval is added to diameters of previously opened pores as:

$$
D_{\mathrm{avg}_{\text {Jew }}}=D_{\mathrm{avg}_{\text {Jold }}}+2(\Delta T w)
$$

(not including $\mathrm{D}_{\text {avg, } \mathrm{K}}$)
The layer thickness change desorbed during this interval also is added to the radii corresponding to the ends of the pressure intervals as:

$$
R c_{\mathrm{J}_{\mathrm{new}}}=R c_{\mathrm{J}_{\mathrm{old}}}+\Delta T w
$$

for all except $\mathrm{Rc}_{\mathrm{K}+1}$.
Steps a to c are repeated for each pressure interval.
After the above calculations have been performed, the diameters corresponding to the ends of the intervals are calculated as:

$$
D p_{J}=2\left(r c_{J}\right)
$$

for all Rc_{J}. including $\mathrm{Rc}_{\mathrm{K}+1}$.
The remaining calculations are based on $\mathrm{Dp}_{\mathrm{l}}, \mathrm{D}_{\mathrm{avg}, \mathrm{l}}$, and LP_{f}. These calculations are only done for $\mathrm{D}_{\text {avg, }}$ values that fall between the Minimum BJH diameter and the Maximum BJH diameter specified report options.
(1) Incremental Pore Volume ($\mathrm{Vp}_{\mathrm{l}}, \mathrm{cm}^{3} / \mathrm{g}$):

$$
V p_{I}=\pi\left(L p_{I}\right)\left[\frac{D_{\text {avg }_{I}}}{2}\right]^{2}\left[\frac{10^{16} \mathrm{~cm}^{2}}{\dot{\AA}^{2}}\right]
$$

(2) Cumulative Pore Volume $\left(\mathrm{VP}_{\text {cum, }, ~}, \mathrm{~cm}^{3} / \mathrm{g}\right)$:

$$
V P_{c u m_{I}}=\sum V P_{\mathrm{J}} \text { for }(J \leq 1)
$$

(3) Incremental Surface Area SAI, $\mathrm{m}^{2} \mathrm{~g}$):

$$
\mathrm{SA}_{I}=\pi\left(L P_{I}\right)\left(10^{-2} \mathrm{~m} / \mathrm{cm}\right)\left(D_{\text {avg }_{I}}\right)\left(10^{-10} \mathrm{~m} / A\right)
$$

(4) Cumulative Surface Area $\mathrm{SA}_{\text {cum, },}, \mathrm{m}^{2} \mathrm{~g}$):

$$
S A_{\text {cum }_{10}}=\sum S A_{\mathrm{J}} \text { for } J \leq 1
$$

(5) $\mathrm{dV} / \mathrm{dD}$ pore volume $\left(\mathrm{dV} / \mathrm{dD}_{\mathrm{l}}, \mathrm{cm}^{3} / \mathrm{g}-\mathrm{A}\right)$:

$$
\frac{d V}{d D_{\mathrm{I}}}=\frac{V P_{\mathrm{I}}}{D p_{I}-D p_{\mathrm{I}+1}}
$$

(6) $\mathrm{dV} / \mathrm{d} \log (\mathrm{D})$ pore volume $\left(\mathrm{dV} / \mathrm{d} \log (\mathrm{D})_{\mathrm{I}}, \mathrm{cm}^{3} \mathrm{~g}\right)$:

$$
\frac{d D v}{d \log D_{\mathrm{I}}}=\frac{V P_{\mathrm{I}}}{\log \left(\frac{D p_{\mathrm{I}}}{D D_{p_{\mathrm{I}}+1}}\right)}
$$

(7) $d A / d D$ pore area (dA/dDI, $\left.m^{2} / g-A\right)$:

$$
\frac{d A}{d D \mathrm{I}}=\frac{S A_{\mathrm{I}}}{D p_{\mathrm{I}}-D p_{\mathrm{I}+1}}
$$

(8) $d A / d \log (D)$ pore area $\left[d A / d \log (D)_{l}, \mathrm{~m}^{2} / \mathrm{g}\right]$:

$$
\frac{d A}{d \log D_{\mathrm{I}}}=\frac{S A_{I}}{\log \left(\frac{D_{p_{\mathrm{I}}}}{D D_{p_{\mathrm{I}}+1}}\right)}
$$

For fixed pore size tables (if selected), the following calculations are performed:
(1) Average Fixed Pore Size ($\mathrm{DF}_{\text {avg }} \mathrm{J}, \mathrm{A}$):

$$
D F_{\mathrm{avg}_{J}}=\frac{D p_{F_{\mathrm{J}}}+D_{P_{F_{\mathrm{J}+1}}}}{2}
$$

calculated for all intervals in the fixed pore size table.
For the intervals with between the Minimum BJH diameter and the Maximum BJH diameter.
(2) Cumulative Pore volume $\left(\mathrm{VpF}_{\mathrm{CUM}, \mathrm{I},} \mathrm{cm}^{3} / \mathrm{g}\right)$:
$V_{P} F_{\mathrm{CUM}_{I}}=\operatorname{INTERP}\left(D_{P} F_{\mathrm{I}+1}\right)$
where $\operatorname{INTERP}(\mathrm{x})$ is the value interpolated from the function $\mathrm{X}=\mathrm{dP}_{\mathrm{J}+1}$ and $\mathrm{Y}=\mathrm{V} P_{\text {CUMJ }}$, using an AKIMA semi-spline interpolation.
(3) Incremental Pore Volume ($\mathrm{VpFI}, \mathrm{cum}^{3} / \mathrm{g}$):

$$
V_{P} F_{i}=V_{P} F_{\mathrm{CUM}_{I}}-V_{P} F_{\mathrm{CUM}_{I-1}}
$$

where $\mathrm{VpF}_{\text {CUM } 0}=0$
(4) Cumulative Surface Area (SAF $_{\text {CUMI }}, \mathrm{m}^{2} / \mathrm{g}$):

$$
S A F_{\mathrm{CUM}_{I}}=\operatorname{INTERP}\left(D_{P} F_{\mathrm{I}+1}\right)
$$

where $\operatorname{INTERP}(x)$ is the value interpolated from the function $X=D p_{\mathrm{J}+1}$ and $\mathrm{Y}=\mathrm{SA}_{\text {CUMJ }}$.
(5) Incremental Surface Area $\left(S A F_{1}, \mathrm{~m}^{2} / \mathrm{g}\right)$:

$$
S A F_{\mathrm{I}}=S A F_{\mathrm{CUM}_{I}}-S A F_{\mathrm{CUM}_{I-1}}
$$

$$
\text { where } S A F_{C U M O}=0
$$

(6) $\mathrm{dV} / \mathrm{dD}$ pore volume ($d V / d D p F_{l}, \mathrm{~cm}^{3} / \mathrm{g}-\mathrm{A}$):

$$
\frac{d V}{d D p F_{\mathrm{I}}}=\operatorname{INTERP}\left(D p F_{\mathrm{I}+1}\right)
$$

where $\operatorname{INTERP}(x)$ is the value interpolated from the function $X=D_{\text {avg }}$ and $Y=d V / d D_{J}$.
(7) $d V / d \log (D)$ pore volume $\left[d V / d \log \left(D p F_{i}\right), \mathrm{cm}^{3} / \mathrm{g}\right]$:

$$
\frac{d V}{d \log \left(D p F_{\mathrm{I}}\right)}=\operatorname{INTERP}\left(D p F_{\mathrm{I}+1}\right)
$$

where $\operatorname{INTERP}(\mathrm{x})$ is the value interpolated from the function $X=D_{\text {avg }}$ and $Y=d V / d \log (D)_{J}$
(8) $d A / d D$ pore area $\left(d A / d D p F_{l}, m^{2} / g-A\right)$:

$$
\frac{d A}{d D p F_{\mathrm{I}}}=\operatorname{INTERP}\left(D p F_{\mathrm{I}+1}\right)
$$

where $\operatorname{INTERP}(x)$ is the value interpolated from the function $X=D_{\text {avg }}$ and $Y=d A / d D_{J}$.
(9) $d A / d \log (D)$ pore area $\left[d A / d \log \left(D p F_{1}\right), m^{2} / g\right]$:

$$
\frac{d A}{d \log \left(D p F_{\mathrm{I}}\right)}=\operatorname{INTERP}\left(D p F_{\mathrm{I}+1}\right)
$$

where $\operatorname{INTERP}(x)$ is the value interpolated from the function $X=D_{\text {avg }}$ and $Y=d A / d \log (D)_{J}$.

Compendium of Variables

$V_{a}=$ quantity adsorbed expressed as a volume ($\mathrm{cm}^{3} / \mathrm{g} \mathrm{STP}$)
$V_{\mathrm{I}}=$ liquid equivalent volume of volume adsorbed $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$
D $\quad=$ density conversion factor $\left(\mathrm{cm}^{3} / \mathrm{cm}^{3}\right.$ STP)
$\mathrm{P}_{\mathrm{r}} \quad=\quad$ relative pressure
$\mathrm{D}_{\mathrm{p}} \quad=\quad$ pore (or core) diameter (A)
$R_{C} \quad=\quad$ Kelvin radius (A) of core
$\mathrm{A}=$ adsorbate property factor
$\mathrm{F} \quad=\quad$ fraction of pores open at both ends
$\Delta T w=$ thickness of adsorbed layer desorbed during interval (A)
Tw = thickness of remaining adsorbed wall (A)
HP1, HP2, and HP3 are Halsey Parameters from the Halsey Thickness Equation prompt.
HJ1, HJ2, and HJ3 are Harkins and Jura Parameters from the Harkins and Jura Thickness Equation prompt.
$V d=\quad=\quad$ volume of gas desorbed from walls of previously opened pores $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$
$D_{\text {avg }}=$ average pore diameter (\AA)
CSAa = annular cross-sectional area of the desorbed layer (cm^{2})
CSAC $=$ cross-sectional area of opening of newly opened pores $\left(\mathrm{cm}^{2}\right)$
SAw $=$ total surface area of walls exposed $\left(\mathrm{cm}^{2} / \mathrm{g}\right)$
$\Delta T d \quad=\quad$ thickness of layer desorbed from walls of newly opened pores (\AA)
$V c=$ volume desorbed from cores of newly opened pores $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$
$L_{P} \quad=\quad$ length of pore $(\mathrm{cm} / \mathrm{g})$

Free-Space Correction Algorithms

Free space differential compensation for the Gemini is accomplished in two steps. First, the free space correction, $\mathrm{C}_{\mathrm{f}}\left(\mathrm{cm}^{3} \mathrm{STP} / \mathrm{mmHg}\right)$ is determined. Second, the correction is applied to quantities adsorbed during analysis.

Determining the Free-Space Correction

The free space correction $\mathrm{C}_{\mathrm{f}}\left(\mathrm{cm}^{3} \mathrm{STP} / \mathrm{mmHg}\right)$ can be Measured or Calculated.

Measured

Evacuate the sample and balance ports, charge the reservoirs with helium, and dose to 760 mmHg . Measure the gas quantity differential, $\mathrm{Q}_{\mathrm{h}}\left(\mathrm{cm}^{3} \mathrm{STP}\right)$, and the absolute sample pressure, $\mathrm{P}_{\mathrm{h}}(\mathrm{mmHg})$. Record the free space correction:

$$
C_{f}=\frac{Q_{h}}{P_{h}}
$$

Calculated

This method requires using a bath of liquid nitrogen temperature. It should not be selected for free-space correction if a liquid nitrogen bath is not being used.

Measure the free space correction as above, except use an empty sample tube of the same volume as that to be used during subsequent sample analyses. Calculate and record the system volume correction $Q_{\text {sys }}\left(\mathrm{cm}^{3}\right.$ STP):

$$
Q_{s y s}=760 \mathrm{mmHg} \times \frac{Q_{h}}{P_{h}}
$$

Calculate the sample quantity $Q_{\text {sam }}\left(\mathrm{cm}^{3}\right)$ from independently determined sample mass $M_{\text {sam }}(\mathrm{g})$ and sample density $D_{\text {sam }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$:

$$
Q_{s a m}=\frac{M_{s a m}}{D_{s a m}}
$$

Calculate the quantity of gas displaced by the sample at liquid nitrogen temperature and standard pressure:

$$
Q_{g a s}=Q_{s a m} \times \frac{273.13 K}{77.15 K}
$$

Calculate the free space correction due to both the system volume correction and the gas displaced by the sample in cm^{3} STP/mmHg:

$$
C_{f}=\frac{Q_{s y s}-Q_{g a s}}{760 \mathrm{mmHg}}
$$

Applying the Free-Space Correction to Quantities Adsorbed

Measure the uncorrected quantity adsorbed $\mathrm{Q}_{\mathrm{raw}}\left(\mathrm{cm}^{3}\right.$ STP) and the pressure at which this quantity is adsorbed $P_{\text {ads }}(\mathrm{mmHg})$. Use the independently determined adsorbate nonideality correction C_{n} (\%/atm) and the free space correction $\mathrm{C}_{\mathrm{f}}\left(\mathrm{cm}^{3} \mathrm{STP} / \mathrm{mmHg}\right)$ to calculate the adsorbate quantity correction $Q_{\text {cor }}\left(\mathrm{cm}^{3}\right.$ STP) for this point:

$$
Q_{c o r}=C_{f} \times P_{a d s} \times\left[1+\left(\frac{P_{a d s}\left(C_{n}\right)}{100 \% \times \frac{760 \mathrm{mmHg}}{a t m}}\right)\right]
$$

Apply the correction to the uncorrected quantity adsorbed to obtain the corrected quantity adsorbed $\mathrm{Q}_{\text {ads }}$ (cm^{3} STP):

$$
Q_{a d s}=Q_{r a w}-Q_{c o r}
$$

Horvath-Kawazoe

A relative pressure lower limit is determined such that $L-d_{0}$ never equals zero. All pressure points less than this limit are discarded. For each collected relative pressure point, values of L are chosen in an iterative manner, and the relative pressure $\left(P / P_{0}\right)$ determined by solving one of the following equations:

- Slit Pore Geometry (original Horvath-Kawazoe)
- Cylinder Pore Geometry (Saito / Foley)
- Sphere Pore Geometry (Cheng / Yang)

Slit Pore Geometry (original Horvath-Kawazoe)

When using the original Horvath-Kawazoe ${ }^{1}$) method, the following equation is solved for each value of P. The value of L is determined when the solved-for relative pressure is within 0.1% of the collected absolute pressure:

$$
\mathrm{l}_{\mathrm{n}} \frac{P}{P o}=\frac{K}{R T} \times \frac{I P \times 10^{32} J A^{4} / J c m^{4}}{\sigma^{4} \times\left(L-2 \times d_{0}\right)} \times\left[\frac{\sigma^{4}}{3 \times\left(L-d_{o}\right)^{3}}-\frac{\sigma^{10}}{9 \times\left(L-d_{o}\right)^{9}}-\frac{\sigma^{4}}{3 \times d_{o}^{3}}+\frac{\sigma^{10}}{9 \times d_{o}^{9}}\right]
$$

where
$\mathrm{K}=$ Avogadro's number $\left(6.023 \times 10^{23}\right)$
$\mathrm{R}=$ gas constant ($\left.8.31441 \times 10^{7} \mathrm{ergs} / \mathrm{mol} K\right)$
$\mathrm{T}=$ analysis bath temperature (K), from an entered or calculated value
$\sigma=$ gas solid nuclear separation at zero interaction energy $(\AA), \frac{Z_{S}+Z_{A}}{2}$ where
$Z_{S} \quad=\quad$ sample equilibrium diameter at zero interaction energy (\AA)
$Z_{A} \quad=\quad$ zero interaction energy diameter

1) Horvath, G. and Kawazoe, K., J. Chem. Eng. Japan 16(6), 470 (1983).
$\mathrm{d}_{0}=\frac{D_{\mathrm{A}}+D_{\mathrm{S}}}{2}$
where
$\mathrm{D}_{\mathrm{A}} \quad=\quad$ molecular diameter of adsorbate $(\AA$)
$D_{S} \quad=\quad$ diameter of sample atom (\AA)
$\mathrm{L}=$ pore width (nucleus to nucleus) ((\AA)
$\mathrm{P}=$ equilibrium pressure (mmHg)
$P_{0}=$ saturation pressure (mmHg)
$\mathrm{IP}=$ interaction parameter (10^{-43} ergs- cm^{4})

Cylinder Pore Geometry (Saito/Foley)

When using the Saito/Foley ${ }^{1}$) method, the following equation is solved for each value of P. The value of L is determined when the solved-for relative pressure is within 0.1% of the collected absolute pressure:

$$
\begin{array}{r}
\ln \left(\frac{P}{P_{0}}\right)=\frac{3}{4} \frac{\pi N_{A}}{R T} \times \frac{I P \times 10^{32} J A^{4} / J c m^{4}}{d_{0}{ }^{4}} \times \sum_{k=0}^{\infty}\left[\frac{1}{\mathrm{k}+1}\left(1-\frac{d_{0}}{r_{\mathrm{p}}}\right)^{2 \mathrm{k}} \times\right. \\
\left.\left\{\frac{21}{32} \alpha_{\mathrm{k}}\left(\frac{d_{0}}{r_{\mathrm{p}}}\right)^{10}-\beta_{\mathrm{k}}\left(\frac{d_{0}}{r_{\mathrm{p}}}\right)^{4}\right\}\right]
\end{array}
$$

where
$N_{A}=$ Avogadro's number (6.023×10^{23})
$\mathrm{R}=$ gas constant ($\left.8.31441 \times 10^{7} \mathrm{ergs} / \mathrm{mol} K\right)$
$\mathrm{T}=$ analysis bath temperature (K), from an entered or calculated value
$\mathrm{L}=$ pore width (nucleus to nucleus) $(\AA$)
$P=$ equilibrium pressure (mmHg)
$P_{\mathrm{o}}=$ saturation pressure (mmHg)
$\mathrm{IP}=$ interaction parameter $\left(10^{-43}\right.$ ergs- $\left.\mathrm{cm}^{4}\right)$
$\mathrm{d}_{0}=\frac{D_{\mathrm{A}}+D_{\mathrm{S}}}{2}$
where

$$
\begin{aligned}
\mathrm{D}_{\mathrm{A}} & =\text { molecular diameter of adsorbate }(\AA) \\
\mathrm{D}_{\mathrm{S}}= & \text { diameter of sample atom }(\AA) \\
\alpha_{\mathrm{k}}= & \left(\frac{-4.5-\mathrm{k}}{\mathrm{k}}\right)^{2} \alpha_{\mathrm{k}-1}, \alpha_{0}=1.0 \\
\beta_{\mathrm{k}}= & \left(\frac{-1.5-k}{\mathrm{k}}\right)^{2} \beta_{\mathrm{k}-1}, \beta_{0}=1.0
\end{aligned}
$$

$r_{p}=$ radius of the cylindrical pore, $\frac{L}{2}$

1) Saito, A. and Foley, H. C., AIChE Journal 37(3), 429 (1991).

Sphere Pore Geometry (Cheng/Yang)

When using the Cheng / Yang1) method, the following equation is solved for each value of P. The value of L is determined when the solved-for relative pressure is within 0.1% of the collected absolute pressure:
$\ln \left(\frac{P}{P_{0}}\right)=\frac{6\left(N_{1} \epsilon^{*}{ }_{12}+N_{2} \epsilon^{*} 22\right) L^{3} \times 10^{32} J A^{4} / J c m^{4}}{R T\left(L-d_{0}\right)^{3}}\left[-\left(\frac{d_{0}}{L}\right)^{6}\left(\frac{1}{12} T_{1}+\frac{1}{8} T_{2}\right)+\left(\frac{d_{0}}{L}\right)^{12}\left(\frac{1}{90} T_{3}+\frac{1}{80} T_{4}\right)\right]$
where

$$
\begin{aligned}
& \mathrm{R}=\text { gas constant }\left(8.31441 \times 10^{7} \mathrm{ergs} / \mathrm{mol} K\right) \\
& \mathrm{T}=\text { analysis bath temperature }(K) \text {, from an entered or calculated value } \\
& \mathrm{d}_{0}=\frac{D_{\mathrm{A}}+D_{\mathrm{S}}}{2}
\end{aligned}
$$

where
$\mathrm{D}_{\mathrm{A}} \quad=\quad$ molecular diameter of adsorbate (\AA)
$D_{S} \quad=\quad$ diameter of sample atom (\AA)
$\mathrm{L}=$ pore width (nucleus to nucleus) (\AA)
$\mathrm{N}_{1}=4 \pi L^{2} N_{S}$, where $\mathrm{N}_{\mathrm{s}}=$ number of sample atoms $/ \mathrm{cm}^{2}$ at monolayer
$P \quad$ equilibrium pressure (mmHg)
Po saturation pressure (mmHg)
$\mathrm{N}_{1} \quad 4 \pi \mathrm{~L}^{2} \mathrm{~N}_{\mathrm{S}}$, where $\mathrm{N}_{\mathrm{S}}=$ number of sample atoms $/ \mathrm{cm}^{2}$ at monolayer
$\mathrm{N}_{2}=4 \pi\left(L-d_{0}\right)^{2} N_{A}$, where $\mathrm{N}_{\mathrm{s}}=$ number of gas molecules $/ \mathrm{cm}^{2}$
$\varepsilon^{*}{ }_{12}=\frac{A_{S}}{4 D_{S}{ }^{6}}$, where $A_{S}=\frac{6 \times M C^{2} \times \alpha_{S} \times \alpha_{A}}{\frac{\alpha_{S}}{\chi_{S}}+\frac{\alpha_{A}}{\chi_{A}}}$
$\varepsilon^{*}{ }_{22}=\frac{A_{A}}{0 D d_{A}{ }^{6}}$, where $A_{A}=\frac{3 \times M C^{2} \times \alpha_{A} \times \chi_{A}}{2}$

[^0]\[

$$
\begin{aligned}
& \mathrm{T}_{1}=\frac{1}{(1-S)^{3}}-\frac{1}{(1+S)^{3}} \\
& \mathrm{~T}_{2}=\frac{1}{(1+S)^{2}}-\frac{1}{(1-S)^{2}} \\
& \mathrm{~T} 3=\frac{1}{(1-S)^{9}}-\frac{1}{(1+S)^{9}} \\
& \mathrm{~T} 4= \frac{1}{(1+S)^{8}}-\frac{1}{(1-S)^{8}} \\
& \text { where } \quad S=\frac{L-d_{0}}{L}
\end{aligned}
$$
\]

Cheng/Yang Correction

This factor corrects for the nonlinearity of the isotherm. It adds an additional term to the equations for the different geometrics:

$$
\ln \left(\frac{P}{P_{0}}\right)=G(L)-\left[1-\frac{1}{\theta} \ln \left(\frac{1}{1-\theta}\right)\right]
$$

where
$G(L)=$ one of the Horvath-Kawazoe equations given above
$\theta \quad=\quad$ degree of void filling; θ is estimated by first computing the monolayer capacity $\left(V_{m}\right)$ with the Langmuir equation over the range of data points from relative pressure 0.02 to 0.2 or the maximum relative pressure included in the HorvathKawazoe analysis. θ is computed as the quantity adsorbed over V_{m}.

Interaction Parameter

The interaction parameter (IP) results from the following calculations:
The Kirkwood-Muller dispersion coefficients:

$$
\begin{aligned}
& A_{\mathrm{S}}=\frac{6 \times m c^{2} \times \alpha_{\mathrm{S}} \times \alpha_{\mathrm{A}}}{\frac{\alpha_{\mathrm{S}}}{\chi_{\mathrm{S}}}+\frac{\alpha_{\mathrm{A}}}{\chi_{\mathrm{A}}}} \\
& A_{\mathrm{A}}=\frac{3 \times m c^{2} \times \alpha_{\mathrm{A}} \times \chi_{\mathrm{A}}}{2}
\end{aligned}
$$

where

$M C^{2}$	$=$ kinetic energy of electron $\left(0.8183 \times 10^{-6} \mathrm{erg}\right)$
α_{S}	$=$ polarizability of sample atoms $\left(\mathrm{cm}^{3}\right)$
α_{A}	$=$ polarizability of gas molecule $\left(\mathrm{cm}^{3}\right)$
X_{A}	$=$ diamagnetic susceptibility of gas molecule $\left(\mathrm{cm}^{3}\right)$

$I P=\left(N_{\mathrm{A}} A_{\mathrm{A}}\right)+\left(N_{\mathrm{S}} A_{\mathrm{S}}\right)$
where:
$\mathrm{N}_{\mathrm{A}}=$ number of gas molecules $/ \mathrm{cm}^{2}$ at monolayer
$\mathrm{N}_{\mathrm{S}} \quad=$ number of sample atoms $/ \mathrm{cm}^{2}$

See Interaction Parameter Components on page 22 for recommended values.

Additional Calculations

Based on the previous calculations, the following can be calculated:

Adjusted Pore Width (\AA):

(Shell to Shell)

$$
A L_{\mathrm{I}}=L_{\mathrm{I}}-D S
$$

Cumulative Pore Volume ($\mathrm{cm}^{3} / \mathrm{g}$):

$$
V_{C U M, I}=V_{I} \times D
$$

where
$D=$ density conversion factor (cm^{3} liquid $/ \mathrm{cm}^{3}$ STP)

dV/dD Pore Volume ($\mathrm{cm}^{3} / \mathrm{g}-\AA$):

$$
\frac{d V}{d D_{\mathrm{I}}}=\frac{V_{\mathrm{CUM}_{\mathrm{I}}}-V_{\mathrm{CUM}_{\mathrm{I}}-1}}{A L_{\mathrm{I}}-A L_{\mathrm{I}-1}}
$$

Median Pore Width (\AA):

$$
\begin{aligned}
& V_{\mathrm{HALF}}=\frac{V_{\mathrm{CUM}_{\mathrm{N}}}}{2} \\
& D_{\mathrm{MED}}=\exp \left[\ln \left(D_{\mathrm{L}}\right)+\left[\ln \left(V_{\mathrm{HALF}}\right)-\ln \left(V_{\mathrm{L}}\right)\right] \times \frac{\ln \left(D_{\mathrm{G}}\right)-\ln \left(D_{L}\right)}{\ln \left(V_{G}\right)-\ln \left(V_{L}\right)}\right]
\end{aligned}
$$

where
$V_{\text {CUM,N }}=$ total cumulative pore volume $\left(V_{\text {CUM,I }}\right)$ for points designated for HorvathKawazoe calculations
$V_{\text {HALF }}=50 \%$ of total cumulative pore volume
$V_{L} \quad=\quad$ cumulative pore volume $\left(V_{\text {CUM,I }}\right)$ for first point less than $V_{\text {HALF }}$
$V_{G} \quad=\quad$ cumulative pore volume $\left(V_{\text {CUM,I }}\right)$ for first point greater than $V_{\text {HALF }}$
$\mathrm{D}_{\mathrm{L}} \quad=\quad$ pore width $\left(L_{l}\right)$ that corresponds to V_{L}
$\mathrm{D}_{\mathrm{G}} \quad=\quad$ pore width $\left(L_{l}\right)$ that corresponds to V_{G}

Interaction Parameter Components

Gas	Bath Temperature (K)	Sample Type	Interaction Parameter Calculated Value *
Argon	87.3	Carbon (Ross/Olivier value) Carbon (Horvath/Kawazoe value) Zeolite	$\begin{aligned} & \hline 2.61 \\ & 5.89 \\ & 3.19 \\ & \hline \end{aligned}$
Carbon Dioxide	298.15	Carbon (Ross/Olivier value) Carbon (Horvath/Kawazoe value) Zeolite	$\begin{gathered} 4.20 \\ 9.20 \\ 5.08 \end{gathered}$
	273.15	Carbon (Ross/Olivier value) Carbon (Horvath/Kawazoe value) Zeolite	$\begin{aligned} & 4.34 \\ & 9.35 \\ & 5.22 \end{aligned}$
	194.65	Carbon (Ross/Olivier value) Carbon (Horvath/Kawazoe value) Zeolite	$\begin{aligned} & 4.72 \\ & 9.72 \\ & 5.60 \end{aligned}$
Nitrogen	77.15	Carbon (Ross/Olivier value) Carbon (Horvath/Kawazoe value) Zeolite	$\begin{aligned} & \hline 2.84 \\ & 6.53 \\ & 3.49 \end{aligned}$

* The interaction parameter is entered in Report Options:

Interaction parameter: (calculated value) $\times 10^{-43} \mathrm{ergs}-\mathrm{cm}^{4}$

The following values were used to calculate the values in the previous table.

Carbon-Graphite

$$
\begin{aligned}
D_{S} & =3.40 \\
N_{S} & =3.845 \times 10^{15} \\
X_{S} & =1.05 \times 10^{-29} \text { (Ross/Olivier) } \\
& \\
& 13.5 \times 10^{-29} \\
& \text { (Horvath/Kawazoe, implicit) } \\
\alpha_{S} & =1.02 \times 10^{-24}
\end{aligned}
$$

Nitrogen

$$
\begin{array}{ll}
D_{A} & =3.00 \\
N_{A} & =6.71 \times 10^{14} \\
X_{A} & =3.6 \times 10^{-29} \\
\alpha_{A} & =1.76 \times 10^{-24}
\end{array}
$$

Zeolite

$$
D_{S}=3.04
$$

$$
N_{S}=3.75 \times 10^{15}
$$

$$
x_{S}=1.94 \times 10^{-29}
$$

$$
a_{s}=0.85 \times 10^{-24}
$$

Argon

$$
\begin{aligned}
\mathrm{D}_{\mathrm{A}} & =2.95 \\
\mathrm{~N}_{\mathrm{A}} & =7.608 \times 10^{14} \\
\mathrm{X}_{\mathrm{A}} & =3.22 \times 10^{-29} \\
\mathrm{a}_{\mathrm{A}} & =1.63 \times 10^{-24}
\end{aligned}
$$

Carbon Dioxide

$$
\begin{aligned}
D_{A} & =3.23 \\
N_{A} & =4.567 \times 10^{14}\left(25^{\circ} \mathrm{C}\right) \\
& 5.45 \times 10^{14}\left(0^{\circ} \mathrm{C}\right) \\
& 7.697 \times 10^{14}\left(-78^{\circ} \mathrm{C}\right) \\
X_{A} & =5.0 \times 10^{-29} \\
\alpha_{A} & =2.7 \times 10^{-24}
\end{aligned}
$$

D_{A} values are from van der Waal's constant.
N_{A} values are from liquid densities.
X and α values are derived from data found in Ross and Olivier ${ }^{1}$) .

1) Ross and Olivier, J.P., "On Physical Adsorption," J. Wiley and Sons, New York (1964)

The physical parameters referenced in Saito/Foley are:

Aluminophosphate

D_{S}	$=2.60$
N_{S}	$=1.48 \times 10^{15}$
X_{S}	$=1.3 \times 10^{-29}$
α_{S}	$=2.5 \times 10^{-24}$

Aluminosilicate

D_{S}	$=2.76$
N_{S}	$=1.31 \times 10^{15}$
X_{S}	$=1.3 \times 10^{-29}$
α_{S}	$=2.5 \times 10^{-24}$

Sperical Parameters

The spherical parameters result from the following calculations:
Adsorptive spherical parameter $=N_{A} \times \alpha_{A} \times \chi_{A}$
Adsorbent spherical parameter $=N_{S} \times \frac{\alpha_{S} \times \alpha_{A}}{\frac{\alpha_{S}}{\chi_{S}}+\frac{\alpha_{A}}{\chi_{A}}}$
where
$\mathrm{N}_{\mathrm{A}}=$ number of gas molecules $/ \mathrm{cm}^{2}$ at monolayer
$\mathrm{N}_{\mathrm{S}}=$ number of sample atoms $/ \mathrm{cm}^{2}$
$\alpha_{\mathrm{A}}=$ polarizability of gas molecule $\left(\mathrm{cm}^{3}\right)$
$\alpha_{S}=$ polarizability of sample atoms $\left(\mathrm{cm}^{3}\right)$
$X_{A}=$ diamagnetic susceptability of gas molecule $\left(\mathrm{cm}^{3}\right)$
$X_{S}=$ diamagnetic susceptability of sample atom $\left(\mathrm{cm}^{3}\right)$

Adsorptive and Adsorbent Sperical Parameters

Gas	Bath Temp. (K)	Sample Type	Spherical Parameter	
			Adsorptive	Adsorbent
Argon	87.3	Carbon (Ross/Olivier value) Carbon (Horvath/Kawazoe value) Zeolite	$\begin{aligned} & \hline 3.99313 \\ & 3.99313 \\ & 3.99313 \end{aligned}$	$\begin{gathered} \hline 4.32629 \\ 11.00271 \\ 5.50177 \end{gathered}$
Carbon Dioxide	298.15	```Carbon (Ross/Olivier value) Carbon (Horvath/Kawazoe value) Zeolite```	6.16545 6.16545 6.16545	$\begin{gathered} \hline 7.00604 \\ 17.22493 \\ 8.79855 \end{gathered}$
	273.15	```Carbon (Ross/Olivier value) Carbon (Horvath/Kawazoe value) Zeolite```	$\begin{aligned} & 7.35750 \\ & 7.35750 \\ & 7.35750 \end{aligned}$	$\begin{gathered} \hline 7.00604 \\ 17.22493 \\ 8.79855 \end{gathered}$
	194.65	Carbon (Ross/Olivier value) Carbon (Horvath/Kawazoe value) Zeolite	$\begin{aligned} & 10.39095 \\ & 10.39095 \\ & 10.39095 \end{aligned}$	$\begin{gathered} \hline 7.00604 \\ 17.22493 \\ 8.79855 \end{gathered}$
Nitrogen	77.15	Carbon (Ross/Olivier value) Carbon (Horvath/Kawazoe value) Zeolite	$\begin{aligned} & 4.25146 \\ & 4.25146 \\ & 4.25146 \end{aligned}$	$\begin{gathered} \hline 4.72674 \\ 12.24482 \\ 6.05156 \end{gathered}$
* The spherical parameters are entered in Report Options: Spherical parameter: (calculated value) $\times 10^{-38} \mathrm{~cm}^{4}$				

Langmuir Surface Area

For each point designated for surface area calculations, the Langmuir ${ }^{1}$) transformation is calculated as:

$$
L_{I}=\frac{P_{r e l_{I}}}{N_{\text {ads }}^{I}}
$$

where L_{1} is in units of $\mathrm{g} / \mathrm{cm}^{3}$ STP
A least-squares fit is performed on the ($\mathrm{P}_{\text {rel, }, ~}, \mathrm{~L}_{1}$) designated pairs where $\mathrm{P}_{\text {rel, }, \text { is }}$ the independent variable and L_{\mid}is the dependent variable. The following are calculated:

- Slope (S g/cm ${ }^{3}$ STP)
- Y -intercept $\left(\mathrm{Y}_{\mathrm{INT}} \mathrm{g} / \mathrm{cm}^{3}\right.$ STP)
- Error of the slope ($\mathrm{S}_{\text {ERR }} \mathrm{g} / \mathrm{cm}^{3} \mathrm{STP}$)
- Error of the y -intercept ($\mathrm{Y} \mathrm{I}_{\mathrm{ERR}} \mathrm{g} / \mathrm{cm}^{3} \mathrm{STP}$)
- Correlation coefficient $\left(\mathrm{C}_{\mathrm{C}}\right)$

Using the results of the above calculations, the following can be calculated:

$$
\mathrm{SA}_{L A N}=\frac{C S A \times\left(6.023 \times 10^{23}\right)}{\left(22414 \mathrm{~cm}^{3} S T P\right) \times\left(10^{18} \mathrm{~nm}^{2} / \mathrm{m}^{2}\right) \times S}
$$

where

$$
\text { CSA }=\text { analysis gas molecular cross-sectional area }\left(\mathrm{nm}^{2}\right)
$$

Volume of the Monolayer ($\mathrm{cm}^{3} / \mathrm{g}$ STP):

$$
V_{M}=\frac{1}{S}
$$

[^1]
Langmuir C value:

$$
C=\left[\left(Y_{I N T}\right)\left(V_{m}\right)\right]^{-1}
$$

Error of the Langmuir Surface Area ($\mathrm{m}^{2} / \mathrm{G}$):

$$
\mathrm{LAN}_{E R R}=\frac{\mathrm{SA}_{L A N} \times S_{E R R}}{S}
$$

Single-Point Total Pore Volume

The liquid equivalent of the designated quantity adsorbed is calculated; this is the total pore volume ($\mathrm{cm}^{3} / \mathrm{g}$):

$$
V_{T O T}=\left(Q_{a}\right)(D)
$$

where
D = density conversion factor
$\mathrm{Q}_{\mathrm{a}}=$ volume adsorbed

t-Method

For each point designated for t-Plot ${ }^{1}$) calculations, the following calculations are made:

Thickness for the $I^{\text {th }}$ point (\AA) :

$$
t_{I}=H P I \times\left[\frac{H P 2}{\ln \left(P_{\left.r l_{I}\right)}\right)}\right]^{H P 3}
$$

(Halsey ${ }^{2}$)
or

$$
t_{I}=\left[\frac{H J P 1}{H J P 2-\log \left(P_{r e l_{I}}\right)}\right]^{H J P 3}
$$

or

$$
T_{I}=C B 1\left(\text { Prel }_{l} \times P o\right)^{2}+C B 2\left(\text { Prel }_{l} \times P o\right)+C B 3
$$

where
$\mathrm{t}_{\mathrm{l}}=$ thickness for $\mathrm{I}^{\text {th }}$ point
HP1 = Halsey parameter \#1
HP2 = Halsey parameter \#2
HP3 = Halsey parameter \#3
HJP1 = Harkins and Jura parameter \#1
HJP2 = Harkins and Jura parameter \#2
HJP3 = Harkins and Jura parameter \#3
MP1 = Magee-STSA parameter \#1
MP2 $=$ Magee-STSA parameter \#2
MP3 $=$ Magee-STSA parameter \#3
$P_{\text {rel, }, I}=$ relative pressure for the $I^{\text {th }}$ point (mmHg)

1) Magee, Ricky, Columbian Chemicals Company, personal communications

2) Halsey, G., J. Chem. Phys. 16, 931-937 (1948)
3) Harkins, W.C. and Jura, G., J. Chem. Phys 11, 431 (1943)
4) Magee, Ricky, Columbian Chemicals Company, personal communications

A least-squares analysis fit is performed on the ($\left.t_{l}, N_{\text {ads,l }}\right)$ data pairs where t_{l} is the independent variable and $\mathrm{N}_{\mathrm{ads} \text {, }}$ is the dependent variable. Only the values of t_{1} between $\mathrm{t}_{\text {MIN }}$ and $\mathrm{t}_{\text {MAX }}$, the minimum and maximum thickness, are used. The following are calculated:

Slope (S cm³/g-Å STP)
Y-intercept (Y ${ }_{\text {INT }}$ cm³/g STP)
Correlation coefficient (Cc)

Using the results of the above calculations, the following can be calculated:
External Surface Area ($\mathrm{m}^{2} / \mathrm{g}$):

$$
\mathrm{SA}_{E X T}=\frac{\left(S \mathrm{~cm}^{3} / g-A S T P\right) \times\left(10^{10} A / m\right) \times\left(D \mathrm{~cm}^{3} \text { liquid } / \mathrm{cm}^{3} S T P\right)}{F \times\left(10^{6} \mathrm{~cm}^{3} / \mathrm{m}^{3}\right)}
$$

where
F = surface area correction (Report Options)
D $\quad=$ density conversion factor (cm^{3} liquid $/ \mathrm{cm}^{3}$ STP)

Micropore Surface Area ($\mathrm{m}^{2} / \mathrm{g}$):

$$
S A \mu P=S A_{T O T}+S A_{E X T}
$$

where $\mathrm{SA}_{\text {TOT }}$ is the BET surface area if a BET report was requested, or Langmuir surface area.

Micropore Volume (cm^{3} liquid/g):

$$
V_{\mu P}=\left(Y_{I N T} \mathrm{~cm}^{3} / g S T P\right) \times\left(D \mathrm{~cm}^{3} \text { liquid } / \mathrm{cm}^{3} S T P\right)
$$

[^0]: 1) Cheng, Linda S. and Yang, Ralph T., Chemical Engineering Science 49(16), 2599-2609 (1994).

[^1]: 1) Langmuir, I., J. Am. Chem. Soc. 38, 2267 (1916); J. Am. Chem. Soc. 40, 1361 (1918); Phys Rev. 8, 149 (1916)
